Identities for the Riemann Zeta Function

نویسنده

  • MICHAEL O. RUBINSTEIN
چکیده

In this paper, we obtain several expansions for ζ(s) involving a sequence of polynomials in s, denoted by αk(s). These polynomials can be regarded as a generalization of Stirling numbers of the first kind and our identities extend some series expansions for the zeta function that are known for integer values of s. The expansions also give a different approach to the analytic continuation of the Riemann zeta function. The inspiration for our formulas comes from Kenter’s short note in the May 1999 Monthly [K] where he derives a formula for Euler’s constant γ which can be regarded as the s → 0 case of (1.8), after subtracting 1/s from both sides. We start with Riemann’s formula

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

Some Unusual Identities for Special Values of the Riemann Zeta Function ∗

In this paper, we use elementary methods to derive some new identities for special values of the Riemann zeta function.

متن کامل

q-Riemann zeta function

We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...

متن کامل

Some Identities for the Riemann Zeta-function

Several identities for the Riemann zeta-function ζ(s) are proved. For example, if s = σ + it and σ > 0, then ∞ −∞ (1 − 2 1−s)ζ(s) s 2 dt = π σ (1 − 2 1−2σ)ζ(2σ). Let as usual ζ(s) = ∞ n=1 n −s (ℜe s > 1) denote the Riemann zeta-function. The motivation for this note is the quest to evaluate explicitly integrals of |ζ(1 2 + it)| 2k , k ∈ N, weighted by suitable functions. In particular, the prob...

متن کامل

Some Identities for the Riemann Zeta-function Ii

Several identities for the Riemann zeta-function ζ(s) are proved. For example, if φ1(x) := {x} = x− [x], φn(x) := ∫ ∞ 0 {u}φn−1 ( x u ) du u (n ≥ 2), then ζn(s) (−s) = ∫ ∞ 0 φn(x)x −1−s dx (s = σ + it, 0 < σ < 1) and 1 2π ∫ ∞ −∞ |ζ(σ + it)| (σ + t) dt = ∫ ∞ 0 φ n (x)x dx (0 < σ < 1). Let as usual ζ(s) = ∑ ∞ n=1 n −s (Re s > 1) denote the Riemann zeta-function. This note is the continuation of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009